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Abstract. An exact expression is obtained for the order parameter susceptibility, xR, in 
the Parisi solution for spin glasses, which shows that the vanishing of the order parameter 
function, q ( x ) ,  at the origin, a constant spin susceptibility and the divergence of XR in the 
spin-glass phase are all intrinsically related. This expression for x R  also suggests that the 
squared-averaged magnetisation is given by 410) and not q(1) .  

1. Introduction 

In the Parisi solution to the mean-field approximation for spin glasses (see Parisi 1981 
for a review), the order parameter is a function, q ( x ) ,  x E [O, 11. The solution was 
first proposed for and applied to an infinite-range Ising spin-glass model for which 
the mean-field approximation is exact (Kirkpatrick and Sherrington 1978, hereafter 
referred to as SK), i.e. a model where each of the N Ising spins SI = k l ,  i = 1, , , . , N, 
interacts with all the rest with quenched Gaussian random exchange interactions .TI, 
of zero mean and variance 1/N. The thermodynamics of this quenched model are 
obtained by averaging the free energy over the Gaussian distribution of .TI, and this 
is accomplished by averaging the partition function for n identical replicas of the 
system (In Z = lim,-o[(Z" - l ) / n ] ) .  The necessity for introducing an order parameter 
function arises because of instabilities arising in the limit n + 0 (de Almeida and 
Thouless 1978, hereafter referred to as AT).  

This unusual solution with an order parameter function has attracted a lot of 
attention and attempts have been made to understand its physical significance (Som- 
polinsky 1981). However, the behaviour of the order parameter susceptibility, ,yR 
(see below), in this solution has not been discussed sufficiently; the only calculation 
to date (Thouless er a1 1980) was restricted to temperatures close to the spin-glass 
freezing temperature, Tg.  However, xR is of great interest in the study of spin glasses: 
in simple solutions, where the order parameter function 4 ( x  ) is a constant independent 
of x (SK solution), XR diverges at Tg but goes negative for T < Tg signalling the AT 
instability (Pytte and Rudnick 1979, Khurana and Hertz 1980); it is also related to 
the dynamic damping coefficient (Hertz et a1 1982). An exact expression for ,yR in 
the Parisi solution is reported in this paper. 
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By order parameter susceptibility, xR, in spin glasses, the trace of the square of 
the susceptibility matrix averaged over the distribution of exchange bonds is meant, i.e. 

X R  = C (Xi ' )av  Xij  = (Si$,) - (Si)(Sj). ( 1 . 1 )  
1 

(When two average signs appear together, as in << the inner stands for the 
thermal average, and the outer with a subscript av for the average oker the quenched 
distribution of bonds. A single average sign (used later) would stand for averages 
done on an effective weight in replicated variables.) The expression for x R  to be 
reported here relates it to the square of the second derivative of the free energy 
functional. The free energy per spin for the Parisi solution is written (Parisi 1980a) 

where f ( x ,  h )  is a functional of q ( x )  and satisfies a nonlinear differential equation 

(1.3) 

with the boundary condition 

f(1, h )  = ln(2 cosh h )  

and C,,,, in (1.2) is a differential operator 

C, = exp($P2q a2/ah2). 
Then 

x i 1  1 -P2Cq(0)(a2f(0,  h ) /ah2)2 .  (1.4) 

Because q(0 )  vanishes in zero field ( 8  4 and Thouless et a1 1980), the right-hand side 
of (1.4) will vanish in zero field (or xR will diverge) if 

1 = p 2 ( a 2 f ( o ,  h ) /ah2)2 .  (1.5) 

It will be discussed later that for q(0) = 0 
1 

a 2 f ( o '  = p ( 1 - Io q (x ) dx) ah2 
and since 

(Parisi 1980b), (1.5), (1.6) and (1.7) suggest that the condition for divergence of xR 
for all T < T, and a constant spin susceptibility independent of T for all T < T, are 
inseparable. 

The close similarity of the expression on the right-hand side of (1.4) to the 
expression for xR in the SK solution (Khurana and Hertz 1980) suggests that the order 
parameter 

q p h y  E ((Si)2)av 

is given by q(0 )  contrary to the suggestion by Parisi, supported by Thouless et a1 
(1980), identifying 4 p h y  with 4 ( l ) .  The name EA order parameter will not be used in 
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this paper to avoid confusion with the dynamical connotations associated with the EA 
definition (Edwards and Anderson 1975). 

It is hoped that this simple expression for xR will shed some new light on the 
nature of the spin-glass transition and the associated order parameter function; 
expansions near T,, however useful, do not usually bring out relations that might exist 
between thermodynamic quantities. Thouless et a1 speculated on whether the diver- 
gence of xR would be suppressed by adding an external field h ( x )  coupling to the 
order parameter function q(x)  by j: dxq(x)h(x) .  This speculation stems from the 
experience with Heisenberg ferromagnets where the susceptibilities transverse to the 
direction of magnetisation, m, diverge for T < T,  in zero field, but acquire finite values 
m / h  in the presence of a uniform field h. The expression (1.4) for xR suggests, 
however, that the divergence of xR depends crucially on q(0) and not all of q(x)  and 
that xR has a physically acceptable non-negative value only for vanishing q(0). As 
for the possibility of deriving the divergence of xR from the invariance of the functional 
f ( x ,  h )  under some set of transformations, (1.4) says that such transformations might 
be nonlinear because xR depends nonlinearly on the derivatives of f .  Alternatively, 
it might be possible to prove the constant value of the spin susceptibility invoking 
invariance under some linear transformations because it (the spin susceptibility) 
depends linearly on the derivatives of f and its constant value is a necessary condition 
for proving the divergence in xR. 

The rest of the paper is divided into three further sections: in the first, Parisi’s 
solution is briefly reviewed and sqme notation introduced, the expression (1.4) for xR 
is derived in the second, and the third section is devoted to some further discussion, 
especially to the identification of qphy. 

2. Parisi’s solution 

Parisi’s solution starts from the expression for the free energy per spin for the SK 
model in the presence of a uniform field h (Kirkpatrick and Sherrington 1978) 

-PF = - lim :qazp = In Tr exp( p 1 SaSPqaP + 1 hS.) 1, 
tal31 n+O n . 

a ,  P = 1, .  . . , n and the sums are over distinct pairs of a and P ,  .and proceeds by 
choosing the saddle-point values of qap to depend on a , @  in a definite way. For 
convenience in keeping track of replica indices in calculating xR, the scheme outlined 
below differs slightly from the one proposed by Parisi; however, the difference is of 
no consequence. In the following, the n X n matrix qap at the saddle point will be 
divided into n l  x n1  blocks, p :  in number, so that p ln l  = n, the diagonal elements of 
the off-diagonal blocks will be called qo, and the rest of the elements q l .  Each of the 
p :  blocks will be further divided into n2 x n2 blocks, p i  in number, so that p2n2 = n l ,  
the diagonal elements of the new off-diagonal blocks will continue to have the value 
q l ,  but all off-diagonal elements of each of the (p1p2)2 blocks will have the value q2. 
This procedure will be iterated; each step in the series of iterations will be labelled 
by an integer K and described by a function GK (h ,  h::) calculated in the presence of 
a field h which couples to the replicas (labelled by a K )  in the smallest blocks (labelled 
by a K )  at any stage of iteration; and the contribution of the In Tr term in ( 2 . 1 )  will be 
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For K = 1 , 2  

(2.3) 

When the replica-dependent fields h:: are set equal to zero, G K ( h )  (fields will be 
assumed to have been set equal to zero when not explicitly written in the arguments 
of the functions) reduce to similar functions in Parisi’s solution (Duplantier 1981), i.e. 

is automatically satisfied if p I  s 1. 
The replica-dependent fields, h :E, have been introduced to facilitate taking 

averages over the effective weight in replica variables, S,, given by the In Tr term in 
(2.1). Indeed, it is trivial to check that equations of state for order parameters, 4[, 
obtained by taking double derivatives of G K ( ~ : ; ,  h )  with respect to h 2 ,  i = 1, . . , , K,  
setting h:; = 0 and taking the limit n -+ 0 are the same as obtained by substituting (2.2) 
in (2.1) and varying the free energy with respect to 41. This procedure for calculating 
averages in replicated variables S, will be used in the calculation of X R .  This section 
will now be closed with an additional comment that at any stage of iteration K ,  the 
order parameter qK is given by 

4 K  = C,, [ ( l / m K ) ( a / a h )  In gK(h)12 (2.8) 

with g K ( h )  independent of qK, and that 
K 

I =o 
1 - C (ml -mL+1)qI = CqK [(l/mK)(a2/ah2) In gK(h)l .  (2.9) 

It may also be recalled (Duplantier 1981) that the series of iterations (2.3)-(2.4) for 

(2.10) 

= 0 when substituted in (2.1) reproduce (1.3) in the limit K +CO with 

f ( x ,  h )  = ( l / x )  In g ( x ,  h ) .  

Then (2.8) and (2.9) give 

(2.11) 

(2.12) 

(2.12) reduces to (1.6) when q(0 )  = 0. 
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3. Order parameter susceptibility 

One problem in calculating x R  as defined by (1.1) in solutions which break the 
permutation symmetry between different replicas has been to  identify the correlation 
in replica variables, S:, that corresponds to XR, especially since (2.1) is independent 
of site variables i and j .  The following two points are useful in arriving at a representa- 
tion for xR. 

(i) In the SK solution, the expression for XR reads (Khurana and Hertz 1980) 

This decomposition of x R  into a single-site spin correlation depends on the infinite 
range of the SK model and is not spo:lt by any manipulations on replica indices. 
Hence, only knowledge of n(q) is required in calculating x R .  

(ii) As discussed by Parisi (1980b) and mentioned earlier in (1.7), the single-site 
spin-spin correlation in this solution reads 

(3.3) 

The average on the right-hand side is taken with weights given by the Tr term in 
(2.1). Since the usual way the average (over a quenched distribution) of the square 
of a thermally averaged variable is obtained in the replica formalism is by introducing 
two different groups of replicas (Kirkpatrick and Sherrington 1978), n(q) in replica 
formalism should read 

1 n  

(3.4) 

(a ,  p )  and ( y ,  6 )  belong to two different groups of replicas, each group running 1, . . . , n 
but no value of (a ,  p )  equals any value of ( y ,  6).  

The expression (3.4) for n(q) has a sum on replica indices running from 1, . . . , n 
and in any solution which breaks the permutation symmetry between replicas, this 
sum may be expanded into a variety of terms corresponding to correlations of spins 
within a block and those between spins in different blocks. One may also define 
several partial correlations, for example, when spins within only one block are con- 
sidered. However, calculations like the one outlined here for n(q) suggest that all 
such partial correlations are ‘benign’ in that they have stable values (less than l / p2 )  
even when n(q) > l / p 2  and XR is unstable. 

Before going to the details of the calculation for n(q), it should be pointed out 
that this calculation, by itself, neither identifies these partial correlations with any 
physical quantity, nor says whether they arise from some kind of ‘restricted’ statistical 
mechanical averaging. (The latter possibility arises because computer simulations 
show the phase space for a spin glass to consist of a large number of energy minima 
separated by barriers which are infinitely high in the thermodynamic limit (Mackenzie 
and Young 1982).) Similarly, this calculation by itself does not reveal the nature of 
the statistical mechanical averaging defined by equations (3.3) and (3.4). However, 
comparing the results of this calculation with those of dynamical calculations suggests 
that n(q) defined in equation (3.4) corresponds to the dynamical damping coefficient 
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at the (longest) infinite time scales whereas the partial correlations correspond to 
damping coefficients which do not truly probe this infinite time scale (Khurana 1983, 
Sommers 1982). This correspondence seems to imply that (3.3) and (3.4) provide a 
way for doing statistical mechanical averages over the set of states to which a spin 
glass relaxes in this infinite time limit. Relations among various approaches that have 
been used to study spin glasses should be explored further for any evidence substantiat- 
ing (or refuting) this suggestion. 

The scheme outlined in 4 2 for breaking the n x n matrices in (a, p )  and ( y ,  6) 
may now be applied to (3.4) and n(q) calculated. Writing out explicitly all possible 
combinations of a pair of replicas yields for K = 1 

c (SaS ,SSd  
a., 
v.6 

(a l ,  b l )  label blocks in the set of replicas (a ,  p )  and take values from 1 to p l ;  (a1, pl) 
label indices within each of the p :  blocks and take values from 1 to n l .  (cl, dl,, (yl ,  6,) 
do the same for the group ( y ,  6). Factors of 2 in (3.5) arise from the symmetry between 
the two groups. Each term in (3.5) can be evaluated by differentiating G l ( h ,  h: ; ) .  
The terms under summation signs are degenerate. For example, all terms of the type 
(S:;S!llS~;S~;), a l  # b l ,  c 1  # dl,  are the same as (S1S1S2S2) when h:; = 0. Now 1 2 3 4  

C,,-,, [tanh2 h ( 2  cosh h ) ’ ~ ] )  
1 

Similarly all terms of the type ( S : ; S ; ; S ; : D $ ) ,  a l  Z b l ,  c1 Z d l ,  a1 # P I ,  Y I  # S I ,  are 
degenerate with (S1S2S3$) given by 1 2 3  
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Following this procedure for each term in (3 .5 ) ,  n(4) for K = 1 reads 

This symmetry in different derivatives of g l ( h )  which led to this simple and compact 
expression for nl(q) holds at every step in the iterations leading to Parisi’s solution. 
As further evidence for this statement, the terms for K = 2 are displayed below: 
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(3.7) 

It should be obvious from (3.6) and (3.7) that after any finite number of iterations 
K, &(q)  is given by 

In the limit K -$ CD, one may define an x-dependent function 

(3.9) 

which reproduces the result for the replica symmetric SK solution for x = 1 and should 
be the answer for the Parisi solution for x = 0. 

4. Order parameters and stability 

If a stable, physically acceptable solution must have a non-negative value for xR, this 
condition for stability now reads 

1 s P 2 n K ( q ) .  (4.1) 

The expression (3.8) for nK(q) after a finite number K of iterations together with the 
equation of state (2.8) for q K  shows that such a solution is unstable just like the SK 

solution was unstable and for the same reason, namely C,, giving different com- 
binatorial weights to terms of order (qK)" in (3.8) than to those of order (qK)"+' in 
(2.8), when the right-hand sides of (3.8) and (2.81, respectively, are expanded in 
powers of qK. This discrepancy was singled out by Khurana and Hertz (1980) as the 
source of the AT instability, and this analysis shows that it is not removed until q ( x )  
vanishes, i.e. until  Parisi's replica symmetry breaking ansatz has been iterated 
infinitely many times. This analysis also shows that (3.10) would be violated and 
the solution would be unstable if q(0 )  were non-zero in zero field, unless 
(a4f(0, l ~ ) / a h ~ ) j ~ = ~  were zero. However, analysis of the equation of state (2.1 1) for 
q(0 )  shows that q ( 0 )  = 0 is a solution of this equation, even for T < T,, if 

1 = ,02(a2f(o, h)/ah2)21,,=o. (4.2) 

This may be understood by comparing (2.11) with the equation of state for the SK 
order parameter. In this formalism, that equation reads 

(4.3) 
(f(1, h )  = ln(2 cosh h )  was defined after (1.3)). Expanding the right-hand side of (4.3) 

q S K  = C,,,(af(l, h ) /ah 1' 
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for small qSK gives the well known result 

for 

This also defines the spin-glass freezing temperature Tg; Tg= 1 because 
(a2f(l, h)/ah2)1,=0= 1. A similar expansion for (2.11) would then give 

q S K  = 11 - P2(aZf(l, h ) /ah  7: =o/ 

1 <P2(a2f(l, h)/ah2);=o. 

q(0) = 0 

if (4.2) were satisfied. That q(0)  vanishes in zero field is also obtained when examining 
the extremum of the free energy functional (1.2) close to Te (Parisi 1980b, Thouless 
eta1 1980). 

Thus the vanishing of the order parameter function, q ( x ) ,  at the origin, a constant 
temperature-independent spin susceptibility, (,yii)av, for T < Te and a divergent order 
parameter susceptibility, xR, for T < Tg are all intrinsically related. These are, in a 
way, different expressions of the same statement. This is a feature which approxima- 
tions close to T, do not bring out. This close connection makes one wonder whether 
the condition for overcoming the problem of negative zero temperature entropy in 
the SK solution (Kirkpatrick and Sherrington 1978) is also just a part in this same 
connection. 

One may ask what one learns about the order parameter function from this 
discussion of the order parameter susceptibility. Setting x = 1 in (3.9) reproduces the 
expression for l l ( q )  in the SK solution if q(1) is identified with the order parameter 
appearing in the SK solution. Since SK argued that the order parameter in their solution 
was equal to one may be tempted to conclude that the above analysis justifies 
Parisi’s identification of q(1) with However, the following argument based 
on the analysis of ,yR and n(q) in the SK solution without the use of replicas (Khurana 
and Hertz 1980) shows that this identification is not self-consistent. 

At high temperatures, ll is just the product of two two-point vertices in the Ising 
model. When T € Tg and the expectation value ( ( S i ) )  of a local spin is different from 
zero, these condensate lines are attached to the two-point vertices and connecting 
these in pairs gives factors of That (1.4) has the same form as that obtained 
for the SK solution without the use of replicas then suggests that these arguments are 
also valid in the Parisi solution. The difference from the SK solution is that the 
two-point vertex is a’f(0, h ) / a h 2  and that a pair of condensate lines gives q(0) .  Thus 
in the limit of a stable solution, 

The connection between XR and the damping coefficient in dynamic theories will 
be taken up separately. One would expect that the relation between xR and the 
damping coefficient found in the SK solution (Hertz et a1 1982) also holds for solutions 
with replica symmetry breaking, but this calculation of xR does not agree with the 
calculation of an x -dependent damping coefficient (Hertz 1983) which diverges for 
all x between 0 and 1. 

is given by q(0). 

Acknowledgments 

The author would like to thank D Elderfield, J Hertz, H Horner and F Wegner for 
several useful discussions. This work was supported by the DFG through Sonderfor- 
schungsbereich 123 (Stochastic Mathematical Models) at the Universitat Heidelberg. 



2852 A Khurana 

References 

de Almeida J R L and Thouless 0 J 1978 J. Phys. A:  Math. Gen. 11 983-90 
Duplantier B 1981 J.  Phys. A:  Math. Gen. 14 283-5 
Edwards S F and Anderson P W 1975 J.  Phys. F: Met. Phys. 5 965 
Hertz J A 1983 J. Phys. C: Solid State Phys. 16 1233-43 
Hertz J A, Khurana A and Puoskari M 1982 Phys. Rev. B 25 2065 
Khurana A 1983 Phys. Rev. Lett. 50 932 
Khurana A and Hertz J A 1980 J.  Phys. C: Solid State Phys. 13 2715 
Kirkpatrick S and Sherrington D 1978 Phys. Rev. B 17 4384 
Mackenzie N D and Young A P 1982 Phys. Rev. Lett. 49 301 
Parisi G 1980a J. Phys. A:  Math. Gen. 13 L115-21 
- 1980b J. Phys. A:  Math. Gen. 13 1887-95 
- 1981 Disordered Systems and Localization ed C Castelloni, C di Castro and L Peliti (Berlin: Springer) 

Pytte E and Rudnick J 1979 Phys. Rev. B 19 3603 
Sommers H J 1982 Institut Laue-Langeoin preprint SP82-I73 (cf equations (40) and (41) in this preprint) 
Sompolinsky H 1981 Phys. Rev. Lett. 47 935 
Thouless D J, de Almeida J R L and Kosterlitz J M 1980 J.  Phys. C: Solid State Phys. 13 3271 

p 109 


